CROSS-X The Cross Platform Explorer

ABSTRACT:
This Project “Cross – X” is a cross platform explorer tool that allows universal access of all types of file system in a heterogeneous network environment having different platforms such as Windows, Linux, Solaris, etc. The tool allows all normal operations such as open, delete, copy, cut, paste, rename, property changing etc to be performed on the files of all types. The tool implements security in file access by authenticating the user before entering into each system with the username and password of the particular system being accessed.

All the existing systems for file sharing between different platforms are mainly focused in sharing the file system between any two particular platforms, For Example, SAMBA SERVICE is used to share files between the Windows and the Linux Platform. This draw back of restricting the file sharing between only two platforms is being solved in this project by allowing neutral access of all the file systems by all other platforms.

When a user works in a particular Operating System he/she can access/view the file systems native to that Operating System. If he/she wants to access/view the file system of other platforms (like Linux, Solaris, MAC, etc) in a heterogeneous network, the application in the parallel Operating System acts as the server, which sends response to the request from the requesting Client and sends the corresponding file information to the Cross – X application.

The System consists of a Centralized Server which maintains and manages all the client information in it and is used to create and authenticate users of the system. The Clients once they are activated register themselves with the Server and the list of active clients is informed to the other clients by the server. The Server and the Client systems are implemented using RMI (Remote method Invocation) Registry by which they establish connections and transmit information between them.

The File information is transferred form one client to the other on request and is transferred in the form of XML (Extensible Markup Language) data which is then parsed at the destination to get the original data sent. The mapping of files to their appropriate application is done. The tool “Cross-X” uses Session Semantics for the purpose of file sharing which reflects the change made in a shared file to other processes accessing that file only at the end of the particular Session and the Data caching model used for the transfer or access of remote files is the File-level transfer model which transfers the entire file on request.

The project is being implemented using Java. Since java is a platform independent language (i.e.), any machine which has JVM(Java Virtual Machine) of that particular platform can be used to run the java class files, So we will be able to implement the project in any platform and will be able to access all different file systems.
CONTENTS

1) Introduction

a. File

4
b. File System

4
c. File Sharing

7
2) System Analysis

a. Remote Procedure Call (RPC)

11
b. Remote Method Invocation (RMI)

15
c. Extensible Markup Language (XML)

23
3) System Requirements

a. Hardware

29
b. Software

29
4) System Design and Implementation

a. System Data Flow Model

30
b. System Architecture

33
c. Module Dependencies

35
5) System Validation

39
6) Conclusion

41
Appendix ‘A’

42
Appendix ‘B’

125
Appendix ‘C’

130
INTRODUCTION:
File:

A File is a named abstract resource capable of string a byte stream for later access or from which a stream of bytes can be read to obtain data (or) in other words a file is a named object that comes into existence by explicit creation, is immune to temporary failures in the system, and persists until explicitly destroyed. Files are created by software and usually conform to a particular file format. They are almost always assigned file names by the file system on which they are stored, so that they can be referred to at a later time. Files are often organized hierarchically by the operating system, placing them in folders or as directories.

Files can be classified into many types. From structural point of view, files are of two types - Unstructured and Structured. From the modifiability criteria, file may be - Mutable and Immutable
File System:

A File System is a subsystem of an OS that performs File Management (The part of the Operating system that creates files ,abstractions, and provides mechanisms for manipulating and controlling them) activities such as organization, storing, retrieval, naming, sharing, and protection of files. The File System of a single-Processor system provides advantage of permanent storage and sharing of information. File systems are represented either textually or graphically by file browsers or shells. If graphically, the metaphor of folders containing documents, other files, and nested folders is often used.
A file system is an integral part of any modern operating system. Early microcomputer operating systems' only real task was file management - a fact reflected in their namesFile systems typically have directories which associate file names with files, usually by connecting the file name to an index into a file allocation table of some sort, such as the FAT in an MS-DOS file system, or an inode in a UNIX-like filesystem. Directory structures may be flat, or allow hierarchies where directories may contain subdirectories. In some file systems, file names are structured, with special syntax for filename extensions and version numbers. In others, file names are simple strings, and per-file metadata is stored elsewhere.

Traditional filesystems offer facilities to create, move and delete both files and directories. They lack facilities to create additional links to a directory (hard links in Unix), rename parent links (".." in Unix-like OS), and create bidirectional links to files.

Linux assigns a device name to each device, but this is not how the files on that device are accessed. There are no drive letters in Linux. Instead, Linux creates a Virtual File System for us, which makes all the files on all the devices appear to exist on one global device. In Linux, there is one root directory, and every file you have access to is located under it somewhere. Furthermore, the Linux root directory does not have to be in any particular place. It might not be on your first hard drive. It might not even be on your computer. Linux can use a network shared resource as its root directory.

To gain access to files on another device, in Linux you must first tell it where in the directory tree you would like those files to appear. This process is called mounting a file system.For example, you will frequently need to access files from CD-ROM. In order to do this, you must tell Linux, "Take the file system from this CD-ROM and make it appear under the directory /mnt." The directory given to Linux is called the mount point. In this case it is /mnt. The /mnt directory exists on all Linux systems, and it is intended specifically for use as a mount point for temporary media like floppy disks or CDs. It may be empty, or it may contain subdirectories for mounting individual devices. Generally, only the administrator (i.e. root user) may authorize the mounting of file systems.

At least one and perhaps many file systems are automatically mounted (automounting) by Linux at boot time. The system administrator can control which file systems are mounted at boot time, and can pre-determine the mount points for specific file systems. The sysadmin can also designate some file systems that may be mounted by normal users, and can specify when mounted file systems are checked for errors and backed up. All this information is stored in the file /etc/fstab, which anyone can read to discover what file systems are available and mountable by users.

Traditional filesystems also offer facilities to truncate, append to, create, move, delete and in-place modify files. They do not offer facilities to prepend to or truncate from the beginning of a file, let alone arbitrary insertion into or deletion from a file. The operations provided are highly asymmetric and lack the generality to be useful in unexpected contexts. For example, interprocess pipes in Linux have to be implemented outside of the filesystem because it does not offer truncation from the beginning of files.

Secure access to basic file system operations can be based on a scheme of access control lists or capabilities. Access control lists have been proved insecure several decades ago, which is why research operating systems tend to use capabilities. Commercial file systems still use access control lists.

File system types:

File system types can be classified into

· Disk File Systems

· Network File Systems

· Special Purpose File Systems

Disk File Systems, a file system designed for the storage of files on a disk drive, which might be directly or indirectly connected to the computer.Examples of disk file systems include: EXT3 provided in Linux , FAT (DOS and Microsoft Windows file system; 12, 16 and 32 bit table depths), HFS (for Mac OS),etc.

Network file systems, a file system where the files are accessed over a network, potentially simultaneously by several computers. Examples of network file systems include: AFS (Andrew File System), CIFS (sometimes also called SMB or Samba filesystems), NFS on Linux.

Special Purpose File Systems is any file system that is not disk file system or network file system. This includes systems where the files are arranged dynamically by software, intended for such purposes as communication between computer processes or temporary file space.Examples include: acme (Plan 9) (text windows), archfs (archive), cdfs (reading and writing of CDs).

File Sharing:

File Sharing is the direct or indirect transfer of files from one computer to another computer over the Internet, over a smaller Intranet. Or across multiple networks following the peer-to-peer model. A shared file may be simultaneously accessed by multiple users. In such a situation, an important design issue for any file system is to clearly define when modifications of file data made by a user are observable by other users.

[image: image1.jpg]

File Sharing in a Local Area Network (LAN)
The four commonly used file sharing semantics are

· Unix Semantics

· Session Semantics

· Immutable shared-files semantics

· transaction like semantics.

Unix Semantics, this forces an absolute time ordering on all operations and ensures that every read operation on a file sees the effects of all previous write operations performed on the file.In particular, writes to an open file by a user immediately become visible to other users who have this file open at the same time.Unix Semantics is most desirable because it is easy to serialize all read/write requests but is difficult to implement in a distributed file system.

In Session Semantics, all changes made to a file during a session (A Series of file accesses made between the open and close operations) are initially made visible only to the client process (or possibly to all processes on the client node) that opened the session and are invisible to other remote processes who have the same file open simultaneously. Once the session is closed, the changes made to the file are made visisble to remote processes only in later starting sessions. Already open instances of the file do not reflect these changes.Here each client maintains it s own image of the file. Furthermore using session semantic raises the question of what should be the fianl image when multiple file sessions, each one having a different filr image are closed one after another. Session semantics should be used only with those file systems tha use the file-lvel transfer model.

Immutable Shared-Files Semantics is based on the immutable file model (File that cannot be modified once it has been created). According to this semantics, once the creator of a file declares it to be sharable, the file is treated as immutable, so that it cannot be modified any more.Changes to the file are handled by creating a new updated version of the file.Each version of the file is treated as an entirely new file. Therefore this semantics allows files to be shared only in the read-only mode (ie) the shared files cannot be modified.

Transaction – like Semantics is based on the transaction mechanism, which is a high-level mechanism for controlling concurrent access to shares mutable data.A transaction is a set of operations enclosed in-between a pair ofbegin_transaction and end_transaction like operations.The transaction mechanism ensures that the partial modifications made to the shared data by a transaction will not be visible to other concurrently executing transactions entil the transaction ends.There fore in multiple concurrent transactions operating on a file, the fianl file content will be the same as if all the transactions were run in some sequential order.

Remote File Accessing:

The two complementary models for accessing remote files are

· Remote Service Model

· Data-Caching Model

Data-Caching Model, In file ssytems that follow data caching model, an important design issu is to decide the unit of data transfer. Unit of data transfer refers to the fraction of a file data that is transferred to and from clients as a result of a single read or write operation. The four Commonly used units for this purpose are

· File-Level Transfer Model

· Block-Level Transfer Model

· Byte-Level Transfer Model

· Record-Level Transfer Model

File-Level Transfer Model, when an operation requires file data to be transferred across the network in either direction between a client and a server, the whole file is moved. The advantages of this model is its conceptual simplicity, Less Requests and Response, better scalability,imune to network failures once the file is copied to the client, optimized disk access routines and also simplifies the task of supporting heterogeneous workstations. The main draw back of this model is that it needs sufficient storage space in the client’s side.

Block-Level transfer model, file data transfers across the network between a client and a server take place in units of file blocks. A file block is a contiguous portion of a file and is usually fixed in length. For filesystems in which block size is equal to virtual memory page size, this model is also called a page-level transfer model. The advantage of this model is that it does not require client nodes to have large storage space.It also eliminate the need to copy an entire file when only a small portion of the file data is needed. Therefore, this model can be used in systems having diskless workstations.The model has poor performance when compare to the file-level transfer model when the access requests are such that most files have to be transferred in their entirety.

Byte-Level Transfer Model, file data transfers across the network between a client and a server take place in units of bytes. This model provides maximum flexibility because it allows storage and retreival of an arbitrary sequential subrange of a file, specified by an offest within a file, and a length. The main draw back of this model is the difficulty in cache management due to the variable length data for different accessrequests.

Record-Level Transfer Model, is suitable for use with those file models in which file contents are structured in the form of records. In this model, filr data transfers across the network between a clinet and a server take place in units of records.

Existing Systems:

A variety of file-sharing programs is available on several different networks. Availability depends partly on operating system, and different networks have different features. The most commonly used systems are the NFS on Linux and the Samba Systems

Samba Service, Samba runs on most UNIX and Unix-like systems, such as GNU/Linux, the Solaris operating environment, and the BSD variants, including Apples OS X Server. The name samba comes from inserting two vowels into the name of the standard protocol that Microsoft Windows network file system use, called server message block (SMB). Samba was originally called smbserver

Network File System (NFS), is a protocol developed by Sun Microsystems, a network file system which allows a computer to access files over a network as if they were on its local disks. NFS is strongly associated with UNIX systems, though it can be used on any platform such as Macintosh and Microsoft Windows operating systems. The server message block (SMB), a similar protocol, is the equivalent implementation of a network file system under Microsoft Windows
SYSTEM ANALYSIS:
Remote Procedure Call (RPC):

Remote Procedure Call (RPC) is a special case of the general purpose message-passing model of IPC (Inter Process Communication) that has become a widely accepted IPC Mechanism in distributed computing systems. The popularity of RPC as the primary communication mechanism for distributed applications is due to its following features:

· Simple Call Syntax

· Familiar Semantics

· Well – Defined Interface

· Ease of Use

· Generality

· Efficiency

Transparency of RPC:

The main reason for the popularity of RPC is the transparency given by it to the users in executing the Remote procedures (i.e.) it seems that the remote procedures are being executed in the local environment. The transparency is of two types namely

· Syntactic Transparency means that the remote procedure call should have exactly the same syntax as a local procedure call.

· Semantic Transparency means that the semantics of a remote procedure call are identical to those of a local procedure call

The RPC Model:

The RPC mechanism is an extension of the procedure call mechanism in the sense that it enables a call to be made to a procedure that does not reside in the address space of the calling process.

The two major components of the RPC model are

· Calling Procedure is located in the local machine and contacts the remote procedure to be executed by placing a request message to the called procedure.
· Called Procedure (remote Procedure) may be located in the same computer as the calling procedure or on a different computer. Gets the parameters from the request message sent by the calling procedure and executes accordingly giving the results via a reply message to the calling process.
The two types of messages involved in the implementation of an RPC system are as follows
· Call Messages that are sent by the client to the server for requesting execution of a particular remote procedure

· Reply Messages that are sent by the server to the client for returning the result of remote procedure execution

[image: image2.jpg]Caller Callee
(Calling Procedure) (Called procedure)

receive procedure
and start procedure

Request Message
Execution

Procedure
Execution

Resume

Execution Send Reply and wait

for next request

Reply Message

Remote Procedure Call (RPC) Model

Implementing RPC Mechanism:

The implementation of an RPC mechanism is based on the concept of stubs, which provide a perfectly normal procedure call abstraction by concealing from programs the interface to the underlying RPC System.

The implementation of an RPC mechanism usually involves the following five elements of program

· The Client

· The Client Stub

· The RPC Runtime

· The Server Stub

· The Server

The Client is a user process that initiates a remote procedure call. To make a remote procedure call, the client makes a perfectly normal local call that invokes a corresponding procedure in the client stub.

The Client Stub is responsible for carrying out the following two tasks:

· On receipt of call request from client, it packs a specification of the target procedure and the arguments into a message and then asks the local RPC Runtime to send it to the server stub

· On receipt of the result of procedure execution, it unpacks the result and passes it to the client.

The RPC Runtime handles the transmission of messages across the network between client and server machines. It is responsible for retransmissions, acknowledgements, packet routing and encryption. The RPC runtime in the client machine receives the call request message from the client stub and sends it to the server machine. The RPC Runtime on the server machine receives the message containing the result of procedure execution from the server stub and sends it to the client machine.

The Server Stub is responsible for carrying out the following two tasks:

· On receipt of the call request message from the local RPC Runtime, the server stub unpacks it and makes a perfectly normal call to invoke the appropriate procedure in the server

· On receipt of the result of procedure execution from the serve, the server stub packs the result into a message and then asks the local RPC Runtime to send it to the client stub

The Server on receiving a call request from the server stub, the server executes the appropriate procedure and returns the result of procedure execution to the server stub.

[image: image3.png]Client machine Server machine

po-SSRIEIELL, o DIINERLL
' « i erver
' Clien I Serve
i [
! ke R I Cp——
1] a toa| oA
i [
i [
i [.
U fctensun | 0 b senversun)
i [
| V)i v
1 [Unpack Pack : 1 | Unpack Pack
i i
KD I
i [
i [
U [recrmand 11 fecRunim
i [
i i v
' [.
! Vool e s
i [
i [
i [
i "
al Pack
=
-

Result packet

Implementation of RPC Mechanism

Remote Method Invocation:

The Java Remote Method Invocation (RMI) system allows an object running in one Java Virtual Machine (VM) to invoke methods on an object running in another Java VM. RMI provides for remote communication between programs written in the Java programming language.

The RMI system consists of three layers: the stub/skeleton layer, the remote reference layer, and the transport layer. The boundary at each layer is defined by a specific interface and protocol; each layer, therefore, is independent of the next and can be replaced by an alternate implementation without affecting the other layers in the system. For example, the current transport implementation is TCP-based (using Java sockets), but a transport based on UDP could be substituted.

To accomplish transparent transmission of objects from one address space to another, the technique of object serialization (designed specifically for the Java language) is used. Object serialization is described in this chapter only with regard to its use for marshaling primitives and objects. Another technique, called dynamic stub loading, is used to support client-side stubs which implement the same set of remote interfaces as a remote object itself. This technique, used when a stub of the exact type is not already available to the client, allows a client to use the Java language's built-in operators for casting and type-checking.

[image: image4.png]Client Program Server Program

Interface Implementation

T Iy

Rl
System

The RMI System

Architectural Overview:
The RMI system consists of three layers:

· The stub/skeleton layer - client-side stubs (proxies) and server-side skeletons

· The remote reference layer - remote reference behavior (e.g. invocation to a single object or to a replicated object)

· The transport layer - connection set up and management and remote object tracking

The application layer sits on top of the RMI system
[image: image5.png]Application

}

Y

Stubs

Skeletons

RMI
System

Remote Reference Layer

Transport

Relationship between RMI Layers
A remote method invocation from a client to a remote server object travels down through the layers of the RMI system to the client-side transport, then up through the server-side transport to the server.

A client invoking a method on a remote server object actually makes use of a stub or proxy for the remote object as a conduit to the remote object. A client-held reference to a remote object is a reference to a local stub. This stub is an implementation of the remote interfaces of the remote object and forwards invocation requests to that server object via the remote reference layer. Stubs are generated using the rmic compiler.

The remote reference layer is responsible for carrying out the semantics of the invocation. For example the remote reference layer is responsible for determining whether the server is a single object or is a replicated object requiring communications with multiple locations. Each remote object implementation chooses its own remote reference semantics-whether the server is a single object or is a replicated object requiring communications with its replicas.

Also handled by the remote reference layer are the reference semantics for the server. The remote reference layer, for example, abstracts the different ways of referring to objects that are implemented in (a) servers that are always running on some machine, and (b) servers that are run only when some method invocation is made on them (activation). At the layers above the remote reference layer, these differences are not seen.

The transport is responsible for connection set-up, connection management, and keeping track of and dispatching to remote objects (the targets of remote calls) residing in the transport's address space.

In order to dispatch to a remote object, the transport forwards the remote call up to the remote reference layer. The remote reference layer handles any server-side behavior that needs to be done before handing off the request to the server-side skeleton. The skeleton for a remote object makes an up-call to the remote object implementation which carries out the actual method call.

The return value of a call is sent back through the skeleton, remote reference layer and transport on the server side, and then up through the transport, remote reference layer and stub on the client side.

The Stub/Skeleton Layer:
The stub/skeleton layer is the interface between the application layer and the rest of the RMI system. This layer does not deal with specifics of any transport, but transmits data to the remote reference layer via the abstraction of marshal streams. Marshal streams employ a mechanism called object serialization which enables Java objects to be transmitted between address spaces. Objects transmitted using the object serialization system are passed by copy to the remote address space, unless they are remote objects, in which case they are passed by reference.

A stub for a remote object is the client-side proxy for the remote object. Such a stub implements all the interfaces that are supported by the remote object implementation. A client-side stub is responsible for:

· Initiating a call to the remote object (by calling the remote reference layer).

· Marshaling arguments to a marshal stream (obtained from the remote reference layer).

· Informing the remote reference layer that the call should be invoked.

· Unmarshaling the return value or exception from a marshal stream.

· Informing the remote reference layer that the call is complete.

A skeleton for a remote object is a server-side entity that contains a method which dispatches calls to the actual remote object implementation. The skeleton is responsible for:

· Unmarshaling arguments from the marshal stream.

· Making the up-call to the actual remote object implementation.

· Marshaling the return value of the call or an exception (if one occurred) onto the marshal stream.

The appropriate stub and skeleton classes are determined at run time and are dynamically loaded as needed, as described in Dynamic Class Loading. Stubs and skeletons are generated using the rmic compiler.
[image: image6.png]arace
Suject

sty

RealSubject

P
VeRSTRRE

requesi).

Proxy

requesi).

The Stub/Skeleton Layer
The Remote Reference Layer:
The remote reference layer deals with the lower level transport interface. This layer is also responsible for carrying out a specific remote reference protocol which is independent of the client stubs and server skeletons.

Each remote object implementation chooses its own remote reference subclass that operates on its behalf. Various invocation protocols can be carried out at this layer, for example:

· Unicast point-to-point invocation.

· Invocation to replicated object groups.

· Support for a specific replication strategy.

· Support for a persistent reference to the remote object
· Reconnection strategies (if remote object becomes inaccessible).

The remote reference layer has two cooperating components:
· The client-side components
· The server-side components.
The client-side component contains information specific to the remote server (or servers, if the remote reference is to a replicated object) and communicates via the transport to the server-side component. During each method invocation, the client and server-side components perform the specific remote reference semantics. For example, if a remote object is part of a replicated object, the client-side component can forward the invocation to each replica rather than just a single remote object.

In a corresponding manner, the server-side component implements the specific remote reference semantics prior to delivering a remote method invocation to the skeleton. This component, for example, could handle ensuring atomic multicast delivery by communicating with other servers in the replica group.

The remote reference layer transmits data to the transport layer via the abstraction of a stream-oriented connection. The transport takes care of the implementation details of connections. Although connections present a streams-based interface, a connectionless transport may be implemented beneath the abstraction.
The Transport Layer:
In general, the transport layer of the RMI system is responsible for:

· Setting up connections to remote address spaces.

· Managing connections.

· Monitoring connection "liveness."

· Listening for incoming calls.

· Maintaining a table of remote objects that reside in the address space.

· Setting up a connection for an incoming call.

· Locating the dispatcher for the target of the remote call and passing the connection to this dispatcher.

The concrete representation of a remote object reference consists of an endpoint and an object identifier. This representation is called a live reference. Given a live reference for a remote object, a transport can use the endpoint to set up a connection to the address space in which the remote object resides. On the server side, the transport uses the object identifier to look up the target of the remote call.

The transport for the RMI system consists of four basic abstractions:

· An endpoint is the abstraction used to denote an address space or Java virtual machine. In the implementation, an endpoint can be mapped to its transport. That is, given an endpoint, a specific transport instance can be obtained.

· A channel is the abstraction for a conduit between two address spaces. As such, it is responsible for managing connections between the local address space and the remote address space for which it is a channel.

· A connection is the abstraction for transferring data (performing input/output).

· The transport abstraction manages channels. Each channel is a virtual connection between two address spaces. Within a transport, only one channel exists per pair of address spaces, the local address space and a remote address space. Given an endpoint to a remote address space, a transport sets up a channel to that address space. The transport abstraction is also responsible for accepting calls on incoming connections to the address space, setting up a connection object for the call, and dispatching to higher layers in the system.

A transport defines what the concrete representation of an endpoint is, so multiple transport implementations may exist. The design and implementation also supports multiple transports per address space, so both TCP and UDP can be supported in the same virtual machine.
[image: image7.png]JRE

JRE

JRE JRE

§ rostos

[restos

Netwark Layer

Tetvwork Cabe-

The Transport Layer
Dynamic Class Loading:
In RPC (remote procedure call) systems, client-side stub code must be generated and linked into a client before a remote procedure call can be done. This code may be either statically linked into the client or linked in at run-time via dynamic linking with libraries available locally or over a network file system. In either the case of static or dynamic linking, the specific code to handle an RPC must be available to the client machine in compiled form.

RMI generalizes this technique, using a mechanism called dynamic class loading to load at runtime (in the Java language's architecture neutral bytecode format) the classes required to handle method invocations on a remote object. These classes are:

· The classes of remote objects and their interfaces.

· The stub and skeleton classes that serve as proxies for remote objects. (Stubs and skeletons are created using the rmic compiler.)

· Other classes used directly in an RMI-based application, such as parameters to or return values from remote method invocations.
Serialization:
Serialization is the process of writing the state of an object to a byte stream. This is useful when we want to save the state of our program to a persistent storage area, such as a file. At a later time, we may restore these objects by using the process of deserialization. Serialization is also needed to implement RMI. RMI allows a Java object on one machine to invoke a method on a different machine. An object may be supplied as an argument to that remote method. The sending machine serializes the object and transmits it. The receiving machine deserializes it.

Why RMI and not Sockets:

The question of why to use RMI and not the server sockets for the server-client communication is answered here with a simple analysis in a network

Using the echo service (which requires no computation time on the server, except for unpacking and repacking the argument and result) the throughput packet measures round-trip time for each of the two kinds of communications. It measures the round-trip time for a call on the client, with argument and result both of the same size. The round-trip time includes the overall time for

· opening the connection on the client (from scratch each time)

· serializing and sending the argument from the client

· receiving and deserializing the argument on the server

· calling a dummy echo() function

· serializing and sending the result from the server

· receiving and deserializing the result on the client
The Total round-trip time in milliseconds obtained by using both the methodologies of RMI and Sockets is tabulated as follows

	Data size
	10 Bytes
	100 Bytes
	1 kByte
	10 kBytes
	50 kBytes
	100 kBytes
	1 MByte
	10 MByte

	RMIClient
	22.9
	19.6
	34.8
	113.1
	436.7
	838.4
	8,354.8
	83,087.5

	SocketClient
	200.5
	200.5
	200.5
	105.2
	430.5
	833.4
	8,291.1
	83,326.8

	ServletClient
	205.8
	200.3
	200.3
	96.0
	421.2
	828.8
	8,395.7
	84,469.4

	GzipSocketClient
	200.8
	200.8
	200.4
	106.5
	454.8
	891.5
	8,903.6
	88,840.8

	LargeSocketClient
	200.5
	200.5
	200.5
	104.2
	394.6
	742.9
	7,213.2
	71,763.2

Total round-trip time in milliseconds

Extensible Markup Language (XML):
Extensible Markup Language, abbreviated XML is a Meta language. XML describes a class of data objects called XML documents and partially describes the behavior of computer programs which process them. XML is an application profile or restricted form of SGML, the Standard Generalized Markup Language. XML documents are made up of storage units called entities, which contain either parsed or unparsed data. Parsed data is made up of characters, some of which form character data, and some of which form markup. Markup encodes a description of the document's storage layout and logical structure. XML provides a mechanism to impose constraints on the storage layout and logical structure.

With XML you can
· Define data structures

· Make these structures platform independent

· Process XML defined data automatically

· Define your own tags
XML Tags:
Tags

XML tags are created like HTML tags. There's a start tag and a closing tag.

<TAG>content</TAG>

The closing tag uses a slash after the opening bracket; just like in HTML. The text between the brackets is called an element.

Syntax

The following rules are used for using XML tags:

_ Tags are case sensitive. The tag <TRAVEL> differs from the tags <Travel> and <travel>

_ Starting tags always need a closing tag

_ All tags must be nested properly

_ Comments can be used like in HTML: <!-- Comments -->

_ Between the starting tag and the end tag XML expects the content.<amount>135</amount> is a valid tag for an element amount that has the content 135

Empty tags

Besides a starting tag and a closing tag, you can use an empty tag. An empty tag does. Not have a closing tag. The syntax differs from HTML: <TAG/>
Elements and sub elements:
Elements and children

With XML tags you define the type of data. But often data is more complex. It can consist of several parts. To describe the element car you can define the tags <car>mercedes</car>. This model might look like this:

<car>

<brand>volvo</brand>

<type>v40</type>

<color>green</color>

</car>

Besides the element car three other elements are used: brand, type and color. Brand, type and color are sub-elements of the element car. In the XML-code the tags of the sub-elements are enclosed within the tags of the element car. Sub-elements are also called children.
XML Attributes:
Attributes

Elements in XML can use attributes. The syntax is:

<element attribute-name = "attribute-value">....</element>

The value of an attribute needs to be quoted, even if it contains only numbers.

An example

<car color = "green">volvo</car>

The same information can also be defined without using attributes:

<car>

<brand>volvo</brand>

<color>green</color>

</car>
Why XML?

The benefits of using XML are

· XML is structured

· XML documents are easily committed to a persistence layer

· XML is platform independent, textual information

· XML is an open standard

· XML is language independent

· DOM and SAX are open, language-independent set of interfaces

· XML is web enabled

· XML is totally extensible

· XML supports shareable structure (using DTDs)

· XML enables interoperability
DOM (Document Object Model):
A DOM XML parser is a Java program that converts your XML documents into some Java object model. Once you have parsed an XML document, it exists in the memory of you Java Virtual Machine as a bunch of objects. When you need to access or modify information stored in the XML document, you don’t have to manipulate the XML document file directly, instead you must access and modify the information through these objects in memory. So the DOM XML parser creates a Java document object representation of your XML document file.
DOM gives you access to the information stored in your XML document as a hierarchical object model. DOM creates a tree of nodes (based on the structure and information in your XML document) and you can access your information by interacting with this tree of nodes. The textual information in your XML document gets turned into a bunch of tree nodes. DOM is similar to the Swing component models, like TableModel, ListModel and TreeModel. These models are simply interfaces which must be implemented by classes that contain the actual data.

[image: image8.png]XML Document Document object free:

<7xmi version="10"7>
<addressbook> addressbook

<person- a2/ person
<name-Nazmul Irs<iname= o] name="Nazmu Idris"
<emaixmi@java-m. com</emaii- [| email="xmig@java-smi.com”
<tperson=

<person~

<name=John Doe</name>

<email-john@doe com</emai>

<fperson=

</addressbook>

DOM tree based object model for information in an XML document
If your XML documents contain document data (e.g., Frame maker documents stored in XML format), then DOM is a completely natural fit for your solution. If you are creating some sort of document information management system, then you will probably have to deal with a lot of document data. An example of this is the Data channel RIO product, which can index and organize information that comes from all kinds of document sources (like Word and Excel files). In this case, DOM is well suited to allow programs access to information stored in these documents.
SAX (Simple API for XML):

SAX stands for the Simple API for XML. Unlike DOM (Document Object Model) which creates a tree based representation for the information in your XML documents, SAX does not have a default object model. This means that when you create a SAX parser and read in a document (unlike DOM) you will not be given a nice default object model. A SAX parser is only required to read in your XML document and fire events based on the things it encounters in your XML document.

Events are fired when the following things happen:

· Open element tags are encountered in your document

· Close element tags are encountered in your document

· #PCDATA and CDATA sections are encountered in your document

· Processing instructions, comments, entity declarations, are encountered in your document.
The three steps to using SAX in your programs are:

· Creating a custom object model

· Creating a SAX parser

· Creating a DocumentHandler (to turn your XML document into instances of your custom object model).
[image: image9.png]ML Document

<P version="10"2>

<adiressbook>

<person>

Nazm s

<emai>
smi@avaicom

<emait>

<lperson

Listof SAX parser method calls
(in sequence) on your
‘Documentandier mpementaton

> 1: startDocument)

:startElement| "addressbook” attibs)

: startElement("person” attrbs)
startElement("name" , afribs)

: characters(char(] start, length)
‘valiates fo"Nazma "

- endElement(“name’)

: startElement| "emai”, attribs)

characters(char], stat, length)
evaluates to Smi@java-micom”

> 9: endElement("emai”)

> 10: endElement(“person”)

> 11: endElement(“addressbook”)
> 12: endDocument()

SAX DocumentHandler interface methods and their sequence

If the information stored in your XML documents is machine readable (and generated) data then SAX is the right API for giving your programs access to this information. Machine readable and generated data include things like:

· Java object properties stored in XML format

· Queries that are formulated using some kind of text based query language (SQL, XQL, OQL)
· Result sets that are generated based on queries (this might include data in relational database tables encoded into XML).
SYSTEM REQUIREMENTS:
Hardware Requirements:

Server:

	S.No
	Particulars
	Specifications

	1

2

3

4
	Processor

Hard Disk

RAM

Monitor
	700 MHz

20 GB

128 MB

SVGA

Client:

	S.No
	Particulars
	Specifications

	1

2

3

4
	Processor

Hard Disk

RAM

Monitor
	700 MHz

20 GB

128 MB

SVGA

Software Requirements:

· Platform:
· Server – Windows NT/2000, Linux, Solaris x86

· Client – Windows NT/2000, Linux, Solaris x86
· Java Remote Method Invocation (RMI)

· Extensible Markup Language (XML)

· Java Swings
SYSTEM DESIGN & IMPLEMENTATION:
System Data Flow Model:

The data flow model of the system is in the pattern of a series of Seven steps. They are as follows

Step 1:

· The Domain Server will be activated

· The RMI Registry will be started Programmatically

[image: image10.png]XN 4

Step 2:

· The Clients will register with the Server by starting the RMI Registry at the startup
[image: image11.png]Server
IP: 192.168.0.1
Port: 3030

Client 1
IP: 192.168.0.3
Port: 2020

ooks up the JNDI for dbject

b)Gets the remote abject
Calls the fanction (o register
sl with server

Step 3:

· The other clients in the network will also follow the Step 2 and will get registered with the server

[image: image12.png]Server
IP: 192.168.0.1
Port: 3030

Client 1 Client 2
IP: 192.168.0.3 1P: 192.168.0.5
Port: 2020 Port: 2020

DLogks up the INDI for abject
b)Gets the remote abject

Calls the fanction to register
sl with server

Step 4:

· Using the remote object obtained during the look up, the clients will call function of the remote object to get the list of registered clients

[image: image13.png]Server
IP: 192.168.0.1
Port: 3030

Client 1 Client 2
IP: 192.168.0.3 1P: 192.168.0.5
Port: 2020 Port: 2020

Remoteobject.
getRegisteredClients();

Step 5:

· A Client say, 192.168.0.3 selects another client machine say, 192.168.0.5 and looks up to the client RMI Registry to get the remote object (Similar to Step 2) and is authenticated by the remote system.
[image: image14.png]Server
IP: 192.168.0.1
Port: 3030

Client 1 Client 2
IP: 192.168.0.3 1P: 192.168.0.5
Port: 2020 Port: 2020

AL ocks up the INDI for abiect
b)Gets the remote object
Authenticates

Step 6:

· With this remote object we can start calling the functions needed to get the files. The file information is sent as XML data after access check for the requested directory

[image: image15.png]Server
IP: 192.168.0.1
Port: 3030

Client 1 Client 2
IP: 192.168.0.3 1P: 192.168.0.5
Port: 2020 Port: 2020

Step 7:

· If the client tries to open the file in remote machine, first, the system will check for mapping in the local machine and open the file accordingly.
[image: image16.png]Server

@
Client 3

Client 1 Client 2
CROSS X - DaTA FLOW MODEL

System Architecture:

The Cross-X system Architecture consists of three tiers, namely
· GUI Tier
· Business Tier

· Integration Tier
The main purpose of the three tiers is to prevent the reflection of change in one tier affecting the other tier (i.e.) when the logic is changed in the Business Tier there must be no reflection that affects the GUI Tier.

[image: image17.png]GUI Tier Business Tier Tntegration Tier

EORY] e
OBJECTS BUSINESS
¥ VALLE DELEGATE
FORM OMICT_ FACTORY

ACTION 4

L
Y

T

DELEGATE \
OBJECTS N

CROSS X - ARCHITECTURE

· The GUI Tier is the interface or the front end and is used to generate events that trigger the file manipulation logic in the business tier. The GUI Tier consists of the Form Objects i.e. the components of the front end such as the buttons, trees, tables, etc and the Form Actions that carries the events triggered in the form objects to the business tier to make the appropriate file manipulation

· The Business Tier consists of all the logic for internal file manipulation, management and connection establishment etc. The Business tier consists of two components namely the Business Delegate Factory and the Business Delegate Objects. The Business Delegate objects implements the entire logic needed for various file manipulations performed. The purpose of the Business Delegate Factory is to avoid the direct usage or access of the Logic Objects by the front end objects i.e. to prevent the reflection due to change. In other words the Business delegate factory acts as an interface between the GUI Tier and the Business Logic.
· The Integration Tier is used for the transmission of the data i.e., file information form one system to the other in the form of XML (Extensible Markup Language) data. The Integration tier consists of three components namely the Unicast Objects, DAO Factory and the DAO Objects. The Unicast Objects is used to access the file system of the local client. The DAO (Data Access Objects) Objects is used to access the file information of remote machines may be the same platform as the local machine or else in a different platform. The purpose of the DAO Factory is the same as that of the Business Delegate factory in the Business Tier i.e. avoids direct access of file objects by the Business delegate objects.
System Modules:

Based on the architecture of the system the project has been split into four different Modules, namely

· Server Management Module

· Authentication Module

· Event Module

· Hand Over Module
Server Management Module:
· The functionalities of this module are

· To maintain the particulars of the clients that are currently active in the network

· To allow a client to register it to the server

· To update the registration of a new client or the removal of a client to all the active clients that are connected to the server
The Server Management Module consists of a centralized server which runs a RMI Registry to bind itself to the clients. The RMI Registry is implemented using an interface called ClientRegister and a class called ClientRegisterImpl. The Server is implemented using the class CrossXServer. When the server is active, it starts the RMI Registry in it and binds the Remote object ClientRegister so that when a client needs to establish a connection with the server it may look up the remote object and bind itself to the server. The Server informs the number of active clients to the new client through a function called registeredsystems() that can be looked up in the remote object. The Server then updates the arrival or removal of any client to all other active clients periodically.
[image: image18.png]Class
CrossXServer

Interface _ Class
ClientRegister ClientRegisterlmpl

Class

CrossXClient —

Interface —ClientAcceptorlmpl

ClientAcceptor I
Class

AuthenticateUser

Class
CrossXClientBD
Class
CrossXFactory
Class
CrossXEventBD

Class Class
[ClientOpenFrame — FolderPancl
i1 ¥
Class Class
ClientOpenEvent FolderPanclEvent
Class | | Class
FilesPanel ilesPanclEvent

Server Management
Module

Authentication Module
and
Hand Over Module

Clas
FileSystemFactory
| |
Class Class
FileSystemDAO FileSystemVO

Event Module

Cross-X Module Interconnectivity

Authentication Module:
· The functionalities of this module are

· To create new users for the installed clients

· To do remote system authentication before entering into the other machine based on the user list maintained in the server

· To delete or do other operations on the users list maintained on the server
The Authentication Module facilitates the creation of users for different systems and allows user creation only from the Server through the default user name “Admin” which is supposed to be the administrator of the system. This restriction of user creation only form the server adds to the security and avoidance of illegal users from entering into the system. The details needed for user creation are the User Name, Password, Description and the IP address of the client to which the user belong to.
The Password is being encrypted by using the MD5 (Message Digest) Crypto Algorithm which simply digests the password using a salt like function. The User information are being stored in the server in the form a text file, to be neutral for all the heterogeneous platforms.
The authentication module is implemented using the following classes namely User for creation of users, PasswordUtility for encrypting the password using MD5 and AuthenticateUser for remote authentication from server.
Event Module:
· The functionalities of this module are

· To Contact the client systems and place a request for the access of the files when an call event occurs in the local machine

· To perform Copy, Cut, Delete, Rename, and other operations on the remote or local files

· To map a file to its appropriate application in the local machine

The Event module is used to trigger all the events that will execute the different file manipulation logic as needed. Once the active clients list is obtained form the server and a particular client is selected in the client window, the client must now establish connection between itself and the selected client. This is also done by using RMI Registry i.e. all the client binds a remote object to be looked up by the other clients. The local client looks up the remote object of the remote client system and establishes connection between them. This is facilitated by the Interface ClientAcceptor and the Class Client AcceptorImpl. The Client is being implemented using a CrossXClient Class.
The GUI (Graphical user Interface) is implemented using the class ClientOpenFrame which consists of the Files Panel and the Folders Panel. The other dialogs such as copying, Property, Copy Progress and Login window are implemented by the classes CopyToDialog, PropertyWindow, ProgressDialog and LoginWindow respectively. The mapping of the file to an appropriate application is being implemented in the FilesPanel class.

The Copying and Moving to operations are performed by establishing a separate connection between the source and the destination clients by the interface FileHandle and class FileHandleImpl. The file manipulation operations are being implemented in the class FilehandleVo.
Hand Over Module:
· The functionalities of this module are

· To transfer the information of the files requested by another client system in the format of XML Data.
· The Hand Over module in the client system gets the XML data from the remote system and parses it using the SAX (Simple API for XML) Parser to get the appropriate file information.

The main function of the Hand Over Module is the handling of the File information from Different Systems. The Hand Over module is used to retrieve the file information in the form of Extensible markup Language (XML) data both from the local machine and the remote machine. The main Classes used to implement the hand over module are FileSystemDAO and FileSystemFactory. The FileSystemDAO is the class that creates the XML data from the File information and on the other end the XML information is parsed back using an XML parser called SAX (Simple API for XML) to get back the original file information. The FileSystemFactory is used to avoid the direct access of the FileSystemDAO.

The XML information constructed from the file information consists of tags and attributes as follows

[image: image19.png]<Root

Path
objects
<File
Name = "abed”
Path
Type ="t
"2345"
Lastmodificddate = "Monday, March 01, 2004, 9:02:20 AM" >
</File>
<File

</Root>

File information in XML Data Form

SYSTEM VALIDATION:
Testing forms an important part of Software Development. It is the process of finding the errors and missing operations and also a complete verification to determine whether the objectives are met and the user requirements are satisfied.

Software testing was carried out in three steps. The three steps were:

Unit Testing:

Unit testing focuses verification effort on the smallest unit of software design (i.e.) the module. The module interface was tested to ensure that information properly flows into and out of the program unit under test. Boundary conditions were tested to ensure that the module operates properly at boundaries established to limit or restrict processing. All independent paths through the control structures were exercised to ensure that all statements in a module have been executed atleast once. And finally all error handling paths were tested.

System Testing:

System testing is an expensive but critical process that may take as much as 50 percent of the time of program development. The common view of testing was that it is performed to prove that there are no errors in the program. However as indicated earlier, this is virtually impossible since analysts cannot prove that software is free and clear of errors. The primary concern was the compatibility of the individual modules.

Performance Testing:

This testing was designed to test the run time performance of software within the context of an integrated system. This testing occured through out all steps in the testing process.

CONCLUSION:
This tool Cross X is a very useful and important tool in the places where a heterogeneous network is involved i.e. a network in which systems with different platforms are found. This project may be used in Educational institutions, Developmental Areas, Research Centers and many other technical areas where a collection of heterogeneous systems are found. The project is implemented using the Java Remote Method Invocation (RMI) which is based on the concept of Remote Procedure Call (RPC).

The Future Enhancements are concentrated in making the access of files by the users more restricted based on their privileges and ownership on files. This goal can be achieved by implementing two functionalities as follows

· The authentication of users to access remote systems based on the users access list of the remote system being accessed.

· Restricting of users from accessing the files for which they do not have the Ownership right or the access privilege
PAGE
41
Developed by E. Susheel Chandar and M. Guna Sekaran

