Cross – X Modules
Based on the architecture of the system the project has been split into four different Modules, namely

· Server Management Module

· Authentication Module

· Event Module

· Hand Over Module
Server Management Module:
· The functionalities of this module are

· To maintain the particulars of the clients that are currently active in the network

· To allow a client to register it to the server

· To update the registration of a new client or the removal of a client to all the active clients that are connected to the server
The Server Management Module consists of a centralized server which runs a RMI Registry to bind itself to the clients. The RMI Registry is implemented using an interface called ClientRegister and a class called ClientRegisterImpl. The Server is implemented using the class CrossXServer. When the server is active, it starts the RMI Registry in it and binds the Remote object ClientRegister so that when a client needs to establish a connection with the server it may look up the remote object and bind itself to the server. The Server informs the number of active clients to the new client through a function called registeredsystems() that can be looked up in the remote object. The Server then updates the arrival or removal of any client to all other active clients periodically.

[image: image1.png]Class
CrossXServer

Interface _ Class
ClientRegister ClientRegisterlmpl

Class

CrossXClient —

Interface —ClientAcceptorlmpl

ClientAcceptor I
Class

AuthenticateUser

Class
CrossXClientBD
Class
CrossXFactory
Class
CrossXEventBD

Class Class
[ClientOpenFrame — FolderPancl
i1 ¥
Class Class
ClientOpenEvent FolderPanclEvent
Class | | Class
FilesPanel ilesPanclEvent

Server Management
Module

Authentication Module
and
Hand Over Module

Clas
FileSystemFactory
| |
Class Class
FileSystemDAO FileSystemVO

Event Module

Cross-X Module Interconnectivity

Authentication Module:
· The functionalities of this module are

· To create new users for the installed clients

· To do remote system authentication before entering into the other machine based on the user list maintained in the server

· To delete or do other operations on the users list maintained on the server
The Authentication Module facilitates the creation of users for different systems and allows user creation only from the Server through the default user name “Admin” which is supposed to be the administrator of the system. This restriction of user creation only form the server adds to the security and avoidance of illegal users from entering into the system. The details needed for user creation are the User Name, Password, Description and the IP address of the client to which the user belong to.

The Password is being encrypted by using the MD5 (Message Digest) Crypto Algorithm which simply digests the password using a salt like function. The User information are being stored in the server in the form a text file, to be neutral for all the heterogeneous platforms.

The authentication module is implemented using the following classes namely User for creation of users, PasswordUtility for encrypting the password using MD5 and AuthenticateUser for remote authentication from server.

Event Module:
· The functionalities of this module are

· To Contact the client systems and place a request for the access of the files when an call event occurs in the local machine

· To perform Copy, Cut, Delete, Rename, and other operations on the remote or local files

· To map a file to its appropriate application in the local machine

The Event module is used to trigger all the events that will execute the different file manipulation logic as needed. Once the active clients list is obtained form the server and a particular client is selected in the client window, the client must now establish connection between itself and the selected client. This is also done by using RMI Registry i.e. all the client binds a remote object to be looked up by the other clients. The local client looks up the remote object of the remote client system and establishes connection between them. This is facilitated by the Interface ClientAcceptor and the Class Client AcceptorImpl. The Client is being implemented using a CrossXClient Class.

The GUI (Graphical user Interface) is implemented using the class ClientOpenFrame which consists of the Files Panel and the Folders Panel. The other dialogs such as copying, Property, Copy Progress and Login window are implemented by the classes CopyToDialog, PropertyWindow, ProgressDialog and LoginWindow respectively. The mapping of the file to an appropriate application is being implemented in the FilesPanel class.

The Copying and Moving to operations are performed by establishing a separate connection between the source and the destination clients by the interface FileHandle and class FileHandleImpl. The file manipulation operations are being implemented in the class FilehandleVo.

Hand Over Module:
· The functionalities of this module are

· To transfer the information of the files requested by another client system in the format of XML Data.
· The Hand Over module in the client system gets the XML data from the remote system and parses it using the SAX (Simple API for XML) Parser to get the appropriate file information.

The main function of the Hand Over Module is the handling of the File information from Different Systems. The Hand Over module is used to retrieve the file information in the form of Extensible markup Language (XML) data both from the local machine and the remote machine. The main Classes used to implement the hand over module are FileSystemDAO and FileSystemFactory. The FileSystemDAO is the class that creates the XML data from the File information and on the other end the XML information is parsed back using an XML parser called SAX (Simple API for XML) to get back the original file information. The FileSystemFactory is used to avoid the direct access of the FileSystemDAO.

The XML information constructed from the file information consists of tags and attributes as follows

[image: image2.png]<Root

Path
objects
<File
Name = "abed”
Path
Type ="t
"2345"
Lastmodificddate = "Monday, March 01, 2004, 9:02:20 AM" >
</File>
<File

</Root>

File information in XML Data Form

